Hierarchical Pattern Mapping

Cyril Soler
Marie-Paule Cani

Alexis Angelidis

iMAGIS - GRAVIR/IMAG - INRIA

Previous works - Pattern mapping

Pattern-based texturing [Neyret & Cani '99]

Map surface with tiles constructed according to all
possible neighboring constraints

Paste pre-cut tiles on surface
Blend borders at rendering

Needs a specific rendering
algorithm or extra texture
storage

Previous works - Conclusion

No 3D method provides at the same time
Initial mesh conservation

Initial texture sample conservation
> This is what we would like to do

Related work in 2D: [Efros & freeman 2001]
Paste blocks selected from texture sample
Reduce discontinuities

[B[B]= B8]

Is it possible on a mesh?

Motivation

Seamlessly texture a mesh using a texture

Difficult because
Generally no continuous parameterization of the mesh

It's hard to texture locally without deformations
Very few information in the input sample

Previous works - On-mesh synthesis

Non parametric sampling [Efro

Use pixel coherence is

Proceed hierarchically

Produces a collection |.
of colored points in 3D \\._

Needs a specific rendering algorithm or extra texture
storage

Proposed approach

Select independent regions in the texture that
match once mapped on the mesh

Advantages
Original mesh and texture sample are preserved

Computed data (e.g. texture coordinates) is portable

Algorithm (and talk) overview

ple - Mesh

Algorithm (and talk) overview

Texture sample - Mesh

1

Flatten faw clusters

:>.

Texture space

Algorithm (and talk) overview
Texture sample - Mesh

Design a face-cluster hierarchy

/ Patch selection loop
\ Optimize]\/[apping /

Algorithm (and talk) ove

Texture sample - Mesh

Design a face-cluster hierarchy

Level 0 Level 1

Algorithm (and talk) overvi

Texture sample - Mesh

Algorithm (and talk) overvi

Texture sample - Mesh

Export texture coordinates

Deepest level

Design a Face-Cluster hierarchy

Requirements:
Face-clusters should be able to project on a plane

Simple subdivision method:
Start with n seed faces (randomly chosen)

Assign mesh faces to the sub-cluster of closest seed

Flattening face-clusters

To flatten a face-cluster

Position parent
control points

y compute
point positions

Advantage

Real-time update when
control points move

—> Useful to optimize fitting

Texture patch fitting

Extraction of a mask

Fitting problem

Can we find E somewhere into

E& gives a possible position for the

Flattening face-cluste

For each face-cluster in texture space
Pre-compute relative position of control points
parent control points

Use barycentric coordinates

Compute them with a heuristic

Surface space Texture space

Face-cluster selection algorithm .@

Select and texture face-clusters until total coverage
Rules:
Select clusters at highest possible level
Propagate mapping to neighboring clusters

If too much error (flattening or fitting)
Subdivide

Texture patch fitting

Example solutions:

Best match searching for a translation x

Minimize L, distance between I and T over J

Texture patch fitting . Mapping optimization

Express Elfl]using image correlation For each newly mapped face cluster
Minimize discontinuity along edges with neighbors

Recursively moving control points

Compute correlation using FFT ()

og=F YF(NF()
Only F(I) and F(J) must be re-computed at each search
F(T) and F(T?) are computed once and saved.

Pre-compute F(T), F(T?) for various orientations
Sample topology is not necessarily toroidal

' Result

“Result (Pentium III) e (21 mn)

2 mn

Results - (3) fun .

Thanks
for listening

Design a Face-Cluster hierarchy ‘

Few requirements
Face-clusters should be able to project on a plane

—> no need for complex methods

General meshes: simple subdivision method:
Start with n seed faces (randomly chosen)
Assign mesh faces to the sub-cluster of closest seed

Subdivision surfaces: intrinsic subdivision

Conclusion - Future work

Advantages
Preserves initial texture sample and mesh geometry

Exports texture coordinates only

Limitations
Mesh resolution should be finer than texture features
The mapping is (almost) never perfect
@ Still co: tent with input mesh resolution

Trade-off: enable local mesh refinement

Improvements
Allow human intervention during algorithm

A better clustering would increase speed

